4.2.3根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及机械故障类型。
4.2.4结合变压器的带电监测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器地声纹振动频谱时,GZAFV-01系统的操控及监测数据分析系统可以自动去查询变压器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形地异常。 杭州国洲电力科技有限公司振动声学指纹在线监测服务的全流程支持。杭州研制的振动声学指纹在线监测系统售后服务
3.3.2绕组及铁芯运行状态分析下图3.10a为变压器运行时绕组及铁芯的声纹振动时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析声纹振动信号。如下图3.10b所示,基于声纹振动信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量作为分析参数。各特征参量定义及解释如下:
3.3.2.1峰值频率:频谱图中比较大幅值对应的频率值。3.3.2.2总谐波畸变率(TotalHarmonicDistortion,THD)所有50Hz整数倍谐波分量的有效值与基频100Hz分量有效值的比值,计算公式:THD=i=0nVi2V1,其中V1为100Hz基频分量有效值,Vi为各谐波分量有效值,i为频率索引值。正常状态下,由于100Hz基频分量为振动频谱图的主要成分,总谐波畸变率应较小;存在故障时,谐波分量增加且峰值频率发生偏移,总谐波畸变率变大 杭州断路器振动声学指纹在线监测系统售后服务GZAFV-01型声纹振动监测系统(变压器、电抗器)实时监测和分析的结合。
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。
3.3.1.1信号包络分析为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析如下图3.5所示。
3.3.1.2信号包络重合度比对分析如下图3.6所示,信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的未来发展趋势。
变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及杭州国洲电力科技有限公司振动声学指纹在线监测技术的政策支持背景。杭州断路器振动声学指纹在线监测遵循标准
杭州国洲电力科技有限公司振动声学指纹在线监测技术的国际合作案例。杭州研制的振动声学指纹在线监测系统售后服务
3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3.2所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)杭州研制的振动声学指纹在线监测系统售后服务
杭州国洲电力科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。