声纹振动监测技术的应用意义GZAFV-01系统适用于GIS、AIS、隔离开关、开关柜等开关设备的带电监测、在线监测与故障诊断,不影响被测设备正常运行且无电气连接,主要意义如下:5.1采用带电监测/在线监测方式,不影响被测设备正常运行,降低了电网风险。5.2监测方式与被测设备无电气连接,具有安全、可靠、安装方便等优点。5.3采用独特的时域、包络、重合度比对、时频矩阵等分析法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测准确度。5.4内置基于海量典型样本的大数据和人工智能研判技术而建立的数据库,可真实反应被试品运行状态,有效诊断故障程度和类型。5.5符合智慧/智能型变电站建设原则,IED具备边缘计算能力,就地采集并处理声纹振动及电流信号,完成分析计算后根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传监测数据的分析结果。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的安全性设计。杭州GZAF-1000S系列振动声学指纹在线监测业绩
3.3GZAFV-01系统的监测数据信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。杭州断路器振动声学指纹在线监测技术产品功能杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的模块化设计。
二、相关标准(遵循但不限于下列标准)2.1GB/T4208外壳防护等级(IP代码)。2.2GB/T10230.1分接开关第1部分:性能要求和试验方法。2.3GB/T10230.2分接开关第2部分:应用导则。2.4DL/T265变压器有载分接开关现场试验导则。2.5DL/T574变压器分接开关运行维修导则。2.6DL/T846.8-2017高电压测试设备通用技术条件第8部分有载分接开关测试仪。2.7DL/T860变电站通信网络和系统。2.8DL/T1430变电设备在线监测系统技术导则。2.9DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范。2.10DL/T1538电力变压器用真空有载分接开关使用导则。2.11DL/T1540油浸式交流电抗器(变压器)运行振动测量方法。2.12DL/T1694.2高压测试仪器及设备校准规范第2部分:电力变压器分接开关测试仪。2.13DL/T1805电力变压器用有载分接开关选用导则。2.14Q/GDW383智能变电站技术导则。
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。GZAFV-01型声纹振动监测系统(开关设备)数据可视化和远程监控。
3.3.1.1信号包络分析为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析如下图3.5所示。
3.3.1.2信号包络重合度比对分析如下图3.6所示,信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的可扩展性。杭州断路器振动声学指纹在线监测重合度对比
杭州国洲电力科技有限公司振动声学指纹在线监测技术的用户培训支持。杭州GZAF-1000S系列振动声学指纹在线监测业绩
3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3.2所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)杭州GZAF-1000S系列振动声学指纹在线监测业绩
杭州国洲电力科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。